1.Moment-Based Feature

- Many shape feature can be represented in terms of moments.
- Suppose we have any shape and that particular shape is represented by a region \mathcal{R} that containing N pixels, we have the following:
 - 1. Center of mass
 - 2. Orientation
 - 3. Bounding rectangle
 - 4. Best-fit ellipse
 - 5. Eccentricity

1.Center of mass

•
$$\overline{\boldsymbol{m}} = \frac{1}{N} \sum_{(m,n) \in \mathcal{R}} \sum m$$
,
 $\overline{\boldsymbol{n}} = \frac{1}{N} \sum_{(m,n) \in \mathcal{R}} \sum n$,

• The (p,q)order central moments become $\mu_{p,q} = \sum_{(m,n) \in \mathcal{R}} \sum (m - \overline{m})^p (n - \overline{n})^q$

where m, n denotes the pixel value.

 ${\mathcal R}$ represents the region.

 μ represents the central moments

N represents total no. of pixel that any shape is containing.

2.Orientation

- Orientation is defined as the angle of axis of the least moment of inertia.
- It is obtained by minimizing with respect to θ the sum is:

$$I(\theta) = \sum \sum_{(m,n)\in\mathcal{R}} D^2 (m,n) = \sum \sum_{(m,n)\in\mathcal{R}} [(n-\overline{n})\cos\theta - (m-\overline{m})\sin\theta]^2$$

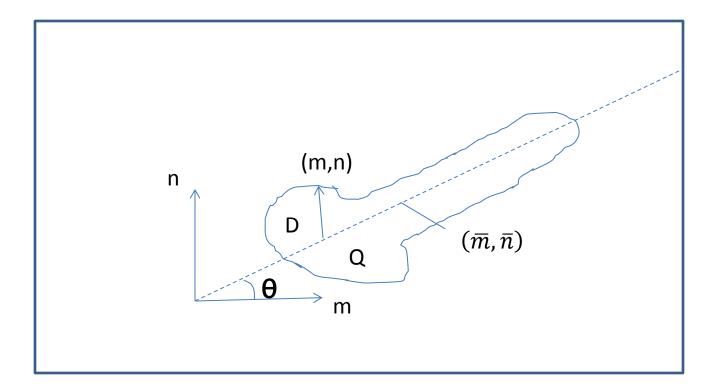
• The result is
$$\theta = \frac{1}{2} \tan^{-1} \left[\frac{2\mu_{1,1}}{\mu_{2,0} - \mu_{0,2}} \right]$$

Cond...

Where

- m, n denotes the pixel value.
- ${\mathcal R}$ represents the region.
- μ represents the central moments.

Orientation

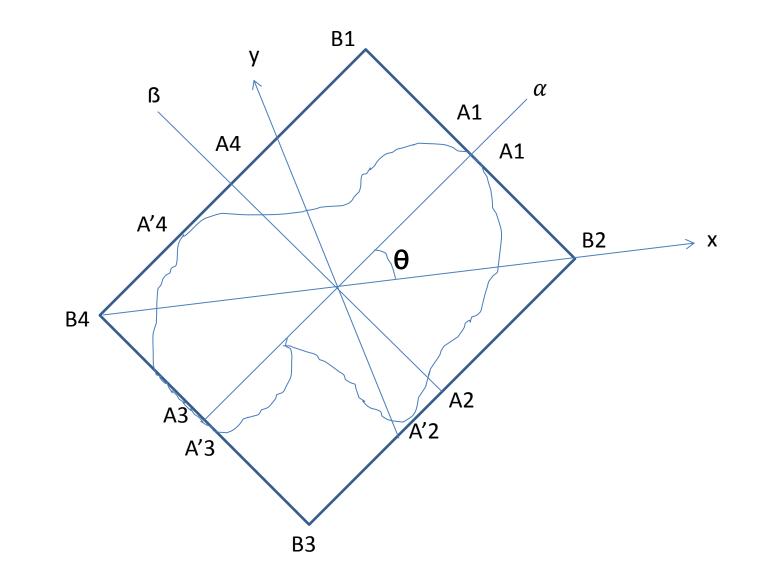


3.Bounding Rectangle

• The bounding rectangle is the smallest rectangle enclosing the object that is also aligned with its orientation.

• Once θ is known we use the transformation $\alpha = x \cos \theta + y \sin \theta$ $\beta = -x \sin \theta + y \cos \theta$ on the boundary points and search for α_{\min} , α_{\max} , β_{\min} , β_{\max} .

Boundary Rectangle



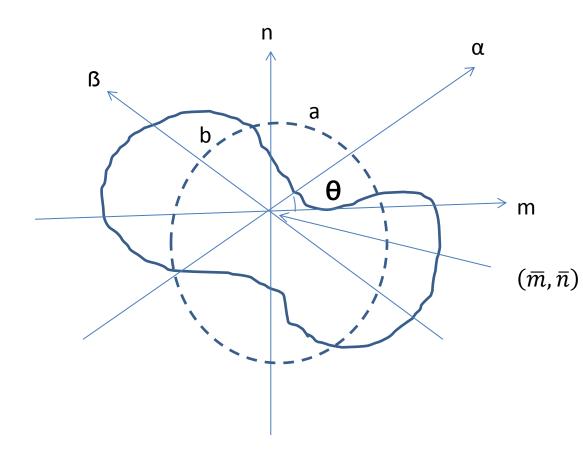
4.Best-fit ellipse

- The best fit ellipse is the ellipse whose second moment equals that of the object.
- Suppose we have any best fit ellipse and a and b denote the lengths of semi-major and semi-minor, respectively, of the best fit ellipse.
- The least and the greatest moments of inertia for an ellipse are

 $I_{\min} = \frac{\pi}{4} ab^3$

 $I_{max} = \frac{\pi}{4} a^3 b$ where a=length of semi major axis. b=length of semi-minor axis. $I_{min} = least moment of inertia.$ $I_{max} = greatest moment of inertia.$

Best Fit Eclipse



Cond....

Suppose we have any orientation θ, then the moment can be calculated as

$$I'_{min} \sum_{min} \sum_{(m,n)\in\mathcal{R}} \left[(n-\overline{n})\cos\theta - (m-\overline{m})\sin\theta \right]$$
$$I'_{max} \sum_{(m,n)\in\mathcal{R}} \left[(n-\overline{n})\sin\theta - (m-\overline{m})\cos\theta \right]^2$$

• For the best-fit ellipse it is required to have $I_{min} = I'_{min}$ & $I_{max} = I'_{max}$, which gives

$$a = \left(\frac{4}{\pi}\right)^{1/4} \left[\frac{(I'_{max})^3}{I'_{min}}\right]^{1/8}$$

 $\mathsf{b} = \left(\frac{4}{\pi}\right)^{1/4} \left[\frac{(I'_{min})^3}{I'_{max}}\right]^{1/8}$

5.Eccentricity

• Generally represented by ε .

•
$$\mathcal{E} \triangleq \frac{(\mu_{2,0} - \mu_{0,2})^2 + 4 \mu_{1,1}}{area}$$

• Some more representations of eccentricity are R_{max}/R_{min} , I'_{max}/I'_{min} and a'_{b} .

where μ represents the central moments

References

1. Anil K. Jain, "Fundamentals of Digital Image Processing", PHI Learning Education ,Inc.,3rd Edition

Thank You!